Microsoft MCSA: Data Engineering with Azure - Nur 5 Tage

Vier Gründe, warum Sie Ihren MCSA Data Engineering with Azure Kurs bei Firebrand Training ablegen sollten:

Sehen Sie hier, wie schnell Sie mit uns neue Qualifikationen erlangen können.

  1. Lernen Sie MCSA Data Engineering with Azure in Rekordzeit. Erlangen Sie Ihre MCSA Data Engineering with Azure Zertifizierung in nur 5 Tagen durch mind. 10 Stunden/Tag qualitativ hochwertige interaktive Unterrichtszeit in einer ablenkungsfreien Lernumgebung.
  2. Unser MCSA Data Engineering with Azure Kurs umfasst ein All-Inklusive-Paket. Enthalten sind Kursunterlagen, Prüfungen, Unterkunft und Verpflegung - damit Sie sich ganz auf das Lernen konzentrieren können.
  3. Bestehen Sie Ihre MCSA Data Engineering with Azure Prüfung auf Anhieb. Unsere praxiserfahrenen Trainer kombinieren visuelle, auditive und taktile Methoden, damit Sie Ihre Zertifizierung auf Anhieb erlangen. Falls nicht, können Sie den Kurs innerhalb eines Jahres wiederholen und zahlen nur für Unterkunft, Verpflegung und Prüfung (AGB – Firebrand Leistungsgarantie).
  4. Lernen Sie mit einem mehrfach ausgezeichneten Trainingsanbieter. Firebrand ist der effiziente Weg zur Zertifizierung: Bereits 66.105 Teilnehmer haben über eine Million Trainingsstunden seit 2001 gespart.

Machen Sie einen kostenlosen Praxistest, um Ihr Wissen einzuschätzen!

Wann starten Sie Ihren Firebrand Intensivkurs?

Start

Ende

Verfügbarkeit

Standort

Anmelden

27.11.2017 (Montag)

1.12.2017 (Freitag)

Kurs gelaufen

-

 

2.4.2018 (Montag)

6.4.2018 (Freitag)

Warteliste

Überregional

 

14.5.2018 (Montag)

18.5.2018 (Freitag)

Einige Plätze frei

Überregional

 

25.6.2018 (Montag)

29.6.2018 (Freitag)

Einige Plätze frei

Überregional

 

6.8.2018 (Montag)

10.8.2018 (Freitag)

Einige Plätze frei

Überregional

 

17.9.2018 (Montag)

21.9.2018 (Freitag)

Einige Plätze frei

Überregional

 

Bereits 66.105 Kursteilnehmer haben seit 2001 erfolgreich einen Firebrand-Kurs absolviert. Unsere aktuellen Kundenbefragungen ergeben: Bei 96.60% unserer Teilnehmer wurde die Erwartungshaltung durch Firebrand übertroffen!

"Es war geil. Den MCSAWS16 nach 11 heftigen Tagen bestanden. Es war eine nicht einfache Zeit (jeden Tag von 08:00 Uhr bis ca. 22:00 Uhr gelernt), aber eine gute (sehr gute) Erfahrung. Alles in allem hat alles gepasst. Super Trainer, super Leute. Gerne wieder!"
Alexander Vierschilling, Bestlife AG. - Microsoft MCSA: Windows Server 2016 (11 Tage) (11.12.2017 bis 21.12.2017)

"Gutes intensives Training. "
Anonym - Microsoft MCSA: Windows Server 2016 (11 Tage) (11.12.2017 bis 21.12.2017)

"Zeit vergeht wie im Flug. Steile Lernkurve, super Trainer, gute Unterstützung der Zertifizierungsvorbereitung, perfekte Verpflegung."
M. C.. - Microsoft MCSA: Cloud Platform & MCSE: Cloud Platform and Infrastructure (Azure) (9 Tage) (4.12.2017 bis 12.12.2017)

"Die erforderlichen Labs haben gut funktioniert und der Trainer hat die erforderlichen Inhalte gut und motiviert vermittelt."
Anonym - Microsoft MCSA: Office 365 (5 Tage) (4.12.2017 bis 8.12.2017)

"Prüfungswissen wird intensiv vermittelt und vorgeführt bzw. erarbeitet."
J. K.. - Microsoft MCSA: Office 365 (5 Tage) (4.12.2017 bis 8.12.2017)

"Trotz Fülle der Informationen noch übersichtlich - gut gemacht."
Anonym - Microsoft Upgrading your skills to MCSA Windows Server 2016 (3 Tage) (4.12.2017 bis 6.12.2017)

"Sehr guter Trainer. Kursteilnehmerzahl gering - Fragen konnten geklärt werden. Unterkunft gut. Sehr gutes Essen."
Thilo Abendroth, Leipa Georg Leinfelder GmbH. - Microsoft MCSE: Messaging (Exchange 2016) (6 Tage) (27.11.2017 bis 2.12.2017)

"Gut fand ich die All-Inclusive Lösung mit integrierter Unterbringung."
T. L., Willis Towers Watson. - Microsoft MCSA: Web Applications & MCSD: App Builder (9 Tage) (16.11.2017 bis 24.11.2017)

"Intensiv, auf den Punkt erfolgreich. Trotz anfänglicher Skepsis über den Erfolg der Lehrmethode, war die Wissensvermittlung super und die Prüfung bestanden."
Marcel Breuer. - Microsoft MCSA: Web Applications & MCSD: App Builder (9 Tage) (16.11.2017 bis 24.11.2017)

"Optimale Voraussetzung und Personal, um den komplexen Inhaltsstoff durchzugehen."
Anonym - Microsoft MCSA: Web Applications & MCSD: App Builder (9 Tage) (16.11.2017 bis 24.11.2017)

"Anstrengend, aber zielführend."
Anonym - Microsoft MCSA: Windows Server 2016 (11 Tage) (16.10.2017 bis 26.10.2017)

"Immer wieder toll zu sehen, dass bei Firebrand sehr gute Trainer arbeiten, die es schaffen, viel Wissen in kurzer Zeit zu vermitteln. Gerne wieder!"
Jan Emmerich, New Media Service GmbH. - Microsoft MCSA: Office 365 (5 Tage) (23.10.2017 bis 27.10.2017)

"Kompakte Wissensvermittlung in entspannter Umgebung, fixiert auf das Prüfungsergebnis."
S. R., DLR PT. - Microsoft Server Infrastructure (6 Tage) (9.10.2017 bis 14.10.2017)

"Intensivtraining, wie man es sich wünscht."
Anonym - Microsoft MCSA: Windows 10 (6 Tage) (25.9.2017 bis 30.9.2017)

"Der Trainer hat die Gruppe gut motiviert, bevor die Gruppe die Prüfungen angetreten hat. "
Philipp Koch, Comforts GmbH. - Microsoft MCSA: Windows Server 2016 (11 Tage) (14.8.2017 bis 24.8.2017)

"Freundlicher Trainer, fundiertes Wissen. Gute Wissensvermittlung. Gutes Trainingscenter."
B. P.. - Microsoft MCSA: Office 365 (5 Tage) (26.6.2017 bis 30.6.2017)

"Effiziente Druckbetankung."
Jörn Kossert, Comline AG. - Microsoft MCSA: Office 365 (5 Tage) (26.6.2017 bis 30.6.2017)

"Eignet sich besonders gut für Kursteilnehmer, die eine Zertifizierung anvisieren. Man sollte zum Kurs jedoch die erforderlichen Voraussetzungen mitbringen, darüber hinaus die Bereitschaft bis zu später Stunde Kursinhalte zu lernen."
Alexandros Pavlidis. - Microsoft MCSE: Messaging (Exchange 2016) (6 Tage) (19.6.2017 bis 24.6.2017)

"Ich würde Firebrand jederzeit weiterempfehlen. Es war für mich eine super Erfahrung und die Kursatmosphäre war angenehm und ich habe mich wohl gefühlt. Ich habe in dieser kurzen Woche mehr gelernt als bei vier Wochen Selbststudium."
Anonym - Microsoft MCSE: SharePoint 2016 (6 Tage) (29.5.2017 bis 3.6.2017)

"Schulungen bei Firebrand sind empfehlenswert. TOP Prüfungsvorbereitung und 1A Service."
Anonym - Microsoft MCSE: SharePoint 2016 (6 Tage) (29.5.2017 bis 3.6.2017)

"MCSE in 9 Tagen. Vielen Dank Firebrand!"
Anonym - Microsoft MCSA: Cloud Platform & MCSE: Cloud Platform and Infrastructure (Azure) (9 Tage) (8.5.2017 bis 16.5.2017)

"Viel Input in kürzester Zeit - sehr empfehlenswert!"
Anonym - Microsoft MCSA: Cloud Platform & MCSE: Cloud Platform and Infrastructure (Azure) (9 Tage) (8.5.2017 bis 16.5.2017)

"Es ist eine krasse Herausforderung, aber man kann unheimlich viel mitnehmen, sowohl fachlich als auch persönlich."
Anonym - Microsoft MCSA: Cloud Platform & MCSE: Cloud Platform and Infrastructure (Azure) (9 Tage) (8.5.2017 bis 16.5.2017)

"11 Tage am Stück, jeden Tag im Klassenzimmer/Trainingsraum und anschließend noch eigenständige Nacharbeit und Lernen ist sehr anstrengend, aber letzten Endes zahlt es sich aus."
Anonym - Microsoft MCSA: Windows Server 2016 (11 Tage) (3.4.2017 bis 13.4.2017)

"Zielgerichtetes, sehr anstrengendes und zielführendes Training mit sehr gutem Trainer."
Anonym - Microsoft MCSA: Windows Server 2016 (11 Tage) (3.4.2017 bis 13.4.2017)

"Ein engagierter und kompetenter Trainer, der auf alle Fragen einging. Super! Gerne wieder!"
Anonym - Microsoft Dynamics CRM 2016 (11 Tage) (26.3.2017 bis 5.4.2017)

"Sehr motivierendes Training mit netten Leuten."
Anonym - Microsoft Dynamics CRM 2016 Customisation and Configuration (4 Tage) (26.3.2017 bis 29.3.2017)

"6 Tage die sich wirklich gelohnt haben! :)"
Anonym - Microsoft MCSA: Web Applications (6 Tage) (6.3.2017 bis 11.3.2017)

"Hat mich motiviert, weiter Weiterbildungen durchzuführen, DANKE!"
Anonym - Microsoft MCSA: Windows 10 (6 Tage) (6.3.2017 bis 11.3.2017)

"Zweites Training, zweiter überragender Trainer (VMware, Microsoft MCSA 2016)."
Anonym - Microsoft MCSA: Windows Server 2016 (11 Tage) (6.2.2017 bis 16.2.2017)

"Es war wirklich extrem herausfordernd - sehr viel Stoff in kurzer Zeit. Ich hätte niemals gedacht, dass man innerhalb einer Woche so einen tiefen und gleichzeitig breit gefächerten Einblick in Azure bekommen kann."
Anonym - Microsoft MCSA: Cloud Platform & MCSE: Cloud Platform and Infrastructure (Azure) (9 Tage) (6.2.2017 bis 14.2.2017)

"Man glaubt, es sei unmöglich. Bis es geschafft ist. Firebrand schafft ambitionierte Prüfungsvorbereitungen - es stimmt! "
Anonym - Microsoft MCSA: Cloud Platform & MCSE: Cloud Platform and Infrastructure (Azure) (9 Tage) (6.2.2017 bis 14.2.2017)

"Wahnsinniger Input innerhalb von kurzer Zeit - muss man mögen und verkraften, dann ist es auch wahnsinnig effektiv!!!"
Anonym - Microsoft MCSE: Communication (Skype for Business) (6 Tage) (9.1.2017 bis 14.1.2017)

"Großartiger Schulungsanbieter - großes Schulungsangebot, sehr qualifiziert, erfahrener und praxisorientierter Trainer. Ich werde Firebrand wieder nutzen und weiter empfehlen."
Anonym - Microsoft MCSA: SQL Server 2016 - Database Administration (6 Tage) (9.1.2017 bis 13.1.2017)

"Trainer sehr gut! (Vortragswesen, Vorbereitung, Knowhow)"
Anonym - Microsoft MCSA: SQL Server 2016 - Database Administration (6 Tage) (9.1.2017 bis 13.1.2017)

"Mit der Ausbildung bei Firebrand kann man sich auf die Zertifizierung optimal vorbereiten."
Anonym - Microsoft Enterprise Devices and Apps (6 Tage) (9.1.2017 bis 14.1.2017)

"Hardcore Training mit fantastischen Leuten."
Anonym - Microsoft MCSE: Messaging (Exchange 2016) (6 Tage) (12.12.2016 bis 17.12.2016)

"Sehr gutes Trainingskonzept, viel Stoff in kurzer Zeit gut aufbereitet und vermittelt. Konzept steht und fällt mit dem Trainer, welcher hier jederzeit voll überzeugte."
Anonym - Microsoft MCSE: Messaging (Exchange 2016) (6 Tage) (12.12.2016 bis 17.12.2016)

"Intensives, praxisorientiertes Training. Ideale Prüfungsvorbereitung. Auf Fragen wird jederzeit ausführlich eingegangen. Übungslabs und Trainingsumgebung super."
Anonym - Microsoft MCSE: Messaging (Exchange 2016) (6 Tage) (12.12.2016 bis 17.12.2016)

"Ich habe jetzt meinen 4. Kurs bei Firebrand hinter mich gebracht. Die Kombination Hotel-Trainingsort ist sehr angenehm. Die Schulungen sind sehr komprimiert und fokussiert."
Anonym - Microsoft MCSE: Messaging (Exchange 2016) (6 Tage) (12.12.2016 bis 17.12.2016)

"Wer bereit ist, intensiv zu lernen, kann aus den Kursen sehr viel mitnehmen!"
Anonym - Microsoft MCSA: SQL Server (9 Tage) (28.11.2016 bis 6.12.2016)

"Schnelle Wissensvermittlung."
Anonym - Microsoft MCSA: Office 365 (5 Tage) (7.11.2016 bis 11.11.2016)

"Das Konzept steht und fällt mit den Trainern, unser Trainer hat einen super Job gemacht!"
Anonym - Microsoft MCSA: Office 365 (5 Tage) (7.11.2016 bis 11.11.2016)

"Zum effizienten Lernen ist Firebrand sehr gut geeignet. Es übersteigt die Qualität eines reinen MOC Kurses um Längen!!!"
Anonym - Microsoft MCSA: Office 365 (5 Tage) (7.11.2016 bis 11.11.2016)

"Klasse Format! Super Trainer! Mein Fachwissen wurde verifiziert und erweitert. Ich bin voll zufrieden."
Anonym - Microsoft Programming in C# (4 Tage) (7.11.2016 bis 10.11.2016)

"Mir gefällt das Konzept des "beschleunigten" Lernens sehr gut. Außerdem hilft die abgelegene Lage des Schulungszentrums sehr gut dabei, sich auf das Lernen zu konzentrieren - TOP!"
Anonym - Microsoft Programming in C# (4 Tage) (7.11.2016 bis 10.11.2016)

"Der Trainer ist sehr auf meine (Anfänger-)Fragen eingegangen. SUPER!"
Anonym - Microsoft Dynamics CRM 2016 Customisation and Configuration (4 Tage) (20.10.2016 bis 23.10.2016)

"Sehr menschliche, fachlich kompetente und prüfungsorientierte Schulung."
Anonym - Microsoft Dynamics CRM 2015 (8 Tage) (16.10.2016 bis 23.10.2016)

"Das sportliche Konzept geht auf. Mit Vorkenntnissen kann man sehr viel Wissen rausziehen."
Anonym - Microsoft MCSE: Communication (Skype for Business) (6 Tage) (10.10.2016 bis 15.10.2016)

"Im Selbststudium hätte ich Wochen gebraucht, um mich in das Thema MSO365 einzuarbeiten und die notwendigen Prüfungen zu machen. Das Bootcamp hat mir eine Menge Zeit erspart."
Anonym - Microsoft MCSA: Office 365 (5 Tage) (26.9.2016 bis 30.9.2016)

Your 5-day accelerated MCSA: Data Engineering with Azure course will develop the skills to design and implement big data engineering workflows with the Microsoft cloud ecosystem and Microsoft HD Insight to extract strategic value from your data.

Your expert Microsoft Certified Trainer (MCT) will immerse you in Microsoft Official Curriculum (MOC) at our distraction-free training centre, allowing you to focus 100% on learning. You'll experience Firebrand's Lecture | Lab | Review technique, combining hands-on practical labs, theory and review sessions to reinforce learning and develop skills and knowledge faster.

You'll cover a range of exciting topics including:

  • Deploying and securing multi-user HDInsight clusters
  • Implementing batch solutions with Hive and Apache Pig
  • Creating Spark streaming applications using DStream API
  • Developing big data real-time processing solutions with Apache Storm
  • Performing exploratory data analysis by using Spark SQL

You'll be prepared for exams 70-775: Perform Data Engineering on Microsoft HD Insight and 70-776: Engineering Data with Microsoft Cloud Services. You'll sit these on-site during the course, covered by your Certification Guarantee.

Your MCSA: Data Engineering with Azure certification will validate skills in implementing big data engineering workflows with Microsoft Cloud Services and Microsoft HDInsight. Ideal if you're a data engineer, data architect, data scientist or data developer. Earning this certifcation acts as your first step towards achieving the MCSE: Data Management and Analytics credential.

Weiterlesen ...

Interessiert? Unsere Preise finden Sie hier oder rufen Sie uns an unter 0720-880599

Verwenden Sie Ihre kostenlosen Microsoft Trainingsgutscheine

Unter Umständen können Sie Ihr Training über das mit hohen Rabatten verbundene Microsoft's Software Assurance Training Voucher (SATV) Programm durchführen. Falls Ihr Unternehmen Microsoft Software-Produkte erworben hat, können Sie überprüfen, ob sie mit dem Produkt ebenfalls kostenlose Trainingsgutscheine erworben haben. Die Gutscheine können für Trainingskurse in allen Microsoft-Technologien eingelöst werden. Wenn Sie Fragen haben, kontaktieren Sie uns einfach.

Firebrand Intensivtrainings – kein gewöhnlicher Kurs

In herkömmlichen Weiterbildungskursen wird vornehmlich im Vortragsstil gelehrt und eigenständiges Testen und Nacharbeiten wird vorausgesetzt.

Effektives technisches Training sollte jedoch in höchstem Maße abwechslungsreich und interaktiv gestaltet werden, um das Aufmerksamkeitslevel hoch zu halten, den Austausch zwischen den Teilnehmern und mit dem Trainer zu fördern und das Erlernte durch praktische Einheiten zu festigen.

Mit der Firebrand Intensiv-Trainingsmethode stellen wir sicher, dass Ihre Lernansprüche erfüllt werden:

  • Intensiver Gruppenunterricht
  • Einzelbetreuung durch den Trainer
  • Praktische Übungseinheiten
  • Übungspartner und Gruppenübungen
  • Frage und Antwort-Einheiten
  • Eigenständige Arbeitsphasen

Umfassendes und transparentes Leistungspaket

Unsere Kurspreise verstehen sich inklusive aller anfallenden Kosten. Im Leistungspaket sind enthalten: Unterricht, Kursunterlagen, Unterkunft, alle Mahlzeiten und Snacks sowie Prüfungsgutscheine. Ausnahme: Die Prüfungsgutscheine sind bei folgenden Partnern nicht im Leistungspaket enthalten: ISACA, GIAC und PMI.

Flexibles Training

Firebrand Training bietet speziell auf die Bedürfnisse der Kursteilnehmer abgestimmtes Training an. Unser Team geht auf die individuellen Lernbedürfnisse der Teilnehmer ein und sichert somit gezielt den Lernerfolg.

Weiterlesen ...

Interessiert? Unsere Preise finden Sie hier oder rufen Sie uns an unter 0720-880599

20775A: Perform Data Engineering on Microsoft Azure HDInsight

Module 1: Getting Started with HDInsight

This module introduces Hadoop, the MapReduce paradigm, and HDInsight.

Lessons

  • What is Big Data?
  • Introduction to Hadoop
  • Working with MapReduce Function
  • Introducing HDInsight

Lab : Working with HDInsight

  • Provision an HDInsight cluster and run MapReduce jobs

After completing this module, students will be able to:

  • Describe Hadoop, MapReduce and HDInsight.
  • Use scripts to provision an HDInsight Cluster.
  • Run a word-counting MapReduce program using PowerShell.

Module 2: Deploying HDInsight Clusters

This module provides an overview of the Microsoft Azure HDInsight cluster types, in addition to the creation and maintenance of the HDInsight clusters. The module also demonstrates how to customise clusters by using script actions through the Azure Portal, Azure PowerShell, and the Azure command-line interface (CLI). This module includes labs that provide the steps to deploy and manage the clusters.

Lessons

  • Identifying HDInsight cluster types
  • Managing HDInsight clusters by using the Azure portal
  • Managing HDInsight Clusters by using Azure PowerShell

Lab : Managing HDInsight clusters with the Azure Portal

  • Create an HDInsight cluster that uses Data Lake Store storage
  • Customise HDInsight by using script actions
  • Delete an HDInsight cluster

After completing this module, students will be able to:

  • Identify HDInsight cluster types
  • Manage HDInsight clusters by using the Azure Portal.
  • Manage HDInsight clusters by using Azure PowerShell.

Module 3: Authorising Users to Access Resources

This module provides an overview of non-domain and domain-joined Microsoft HDInsight clusters, in addition to the creation and configuration of domain-joined HDInsight clusters. The module also demonstrates how to manage domain-joined clusters using the Ambari management UI and the Ranger Admin UI. This module includes the labs that will provide the steps to create and manage domain-joined clusters.

Lessons

  • Non-domain Joined clusters
  • Configuring domain-joined HDInsight clusters
  • Manage domain-joined HDInsight clusters

Lab : Authorising Users to Access Resources

  • Prepare the Lab Environment
  • Manage a non-domain joined cluster

After completing this module, students will be able to:

  • Identify the characteristics of non-domain and domain-joined HDInsight clusters.
  • Create and configure domain-joined HDInsight clusters through the Azure PowerShell.
  • Manage the domain-joined cluster using the Ambari management UI and the Ranger Admin UI.
  • Create Hive policies and manage user permissions.

Module 4: Loading data into HDInsight

This module provides an introduction to loading data into Microsoft Azure Blob storage and Microsoft Azure Data Lake storage. At the end of this lesson, you will know how to use multiple tools to transfer data to an HDInsight cluster. You will also learn how to load and transform data to decrease your query run time.

Lessons

  • Storing data for HDInsight processing
  • Using data loading tools
  • Maximising value from stored data

Lab : Loading Data into your Azure account

  • Load data for use with HDInsight

After completing this module, students will be able to:

  • Discuss the architecture of key HDInsight storage solutions.
  • Use tools to upload data to HDInsight clusters.
  • Compress and serialize uploaded data for decreased processing time.

Module 5: Troubleshooting HDInsight

In this module, you will learn how to interpret logs associated with the various services of Microsoft Azure HDInsight cluster to troubleshoot any issues you might have with these services. You will also learn about Operations Management Suite (OMS) and its capabilities.

Lessons

  • Analyse HDInsight logs
  • YARN logs
  • Heap dumps
  • Operations management suite

Lab : Troubleshooting HDInsight

  • Analyse HDInsight logs
  • Analyse YARN logs
  • Monitor resources with Operations Management Suite

After completing this module, students will be able to:

  • Locate and analyse HDInsight logs.
  • Use YARN logs for application troubleshooting.
  • Understand and enable heap dumps.
  • Describe how the OMS can be used with Azure resources.

Module 6: Implementing Batch Solutions

In this module, you will look at implementing batch solutions in Microsoft Azure HDInsight by using Hive and Pig. You will also discuss the approaches for data pipeline operationalisation that are available for big data workloads on an HDInsight stack.

Lessons

  • Apache Hive storage
  • HDInsight data queries using Hive and Pig
  • Operationalise HDInsight

Lab : Implement Batch Solutions

  • Deploy HDInsight cluster and data storage
  • Use data transfers with HDInsight clusters
  • Query HDInsight cluster data

After completing this module, students will be able to:

  • Understand Apache Hive and the scenarios where it can be used.
  • Run batch jobs using Apache Hive and Apache Pig.
  • Explain the capabilities of the Microsoft Azure Data Factory and Apache Oozie and how they can orchestrate and automate big data workflows.

Module 7: Design Batch ETL solutions for big data with Spark

This module provides an overview of Apache Spark, describing its main characteristics and key features. Before you start, it's helpful to understand the basic architecture of Apache Spark and the different components that are available. The module also explains how to design batch Extract, Transform, Load (ETL) solutions for big data with Spark on HDInsight. The final lesson includes some guidelines to improve Spark performance.

Lessons

  • What is Spark?
  • ETL with Spark
  • Spark performance

Lab : Design Batch ETL solutions for big data with Spark.

  • Create a HDInsight Cluster with access to Data Lake Store
  • Use HDInsight Spark cluster to analyse data in Data Lake Store
  • Analysing website logs using a custom library with Apache Spark cluster on HDInsight
  • Managing resources for Apache Spark cluster on Azure HDInsight

After completing this module, students will be able to:

  • Describe the architecture of Spark on HDInsight.
  • Describe the different components required for a Spark application on HDInsight.
  • Identify the benefits of using Spark for ETL processes.
  • Create Python and Scala code in a Spark program to ingest or process data.
  • Identify cluster settings for optimal performance.
  • Track and debug jobs running on an Apache Spark cluster in HDInsight.

Module 8: Analyse Data with Spark SQL

This module describes how to analyse data by using Spark SQL. In it, you will be able to explain the differences between RDD, Datasets and Dataframes, identify the uses cases between Iterative and Interactive queries, and describe best practices for Caching, Partitioning and Persistence. You will also look at how to use Apache Zeppelin and Jupyter notebooks, carry out exploratory data analysis, then submit Spark jobs remotely to a Spark cluster.

Lessons

  • Implementing iterative and interactive queries
  • Perform exploratory data analysis

Lab : Performing exploratory data analysis by using iterative and interactive queries

  • Build a machine learning application
  • Use zeppelin for interactive data analysis
  • View and manage Spark sessions by using Livy

After completing this module, students will be able to:

  • Implement interactive queries.
  • Perform exploratory data analysis.

Module 9: Analyse Data with Hive and Phoenix

In this module, you will learn about running interactive queries using Interactive Hive (also known as Hive LLAP or Live Long and Process) and Apache Phoenix. You will also learn about the various aspects of running interactive queries using Apache Phoenix with HBase as the underlying query engine.

Lessons

  • Implement interactive queries for big data with interactive hive.
  • Perform exploratory data analysis by using Hive
  • Perform interactive processing by using Apache Phoenix

Lab : Analyse data with Hive and Phoenix

  • Implement interactive queries for big data with interactive Hive
  • Perform exploratory data analysis by using Hive
  • Perform interactive processing by using Apache Phoenix

After completing this module, students will be able to:

  • Implement interactive queries with interactive Hive.
  • Perform exploratory data analysis using Hive.
  • Perform interactive processing by using Apache Phoenix.

Module 10: Stream Analytics

The Microsoft Azure Stream Analytics service has some built-in features and capabilities that make it as easy to use as a flexible stream processing service in the cloud. You will see that there are a number of advantages to using Stream Analytics for your streaming solutions, which you will discuss in more detail. You will also compare features of Stream Analytics to other services available within the Microsoft Azure HDInsight stack, such as Apache Storm. You will learn how to deploy a Stream Analytics job, connect it to the Microsoft Azure Event Hub to ingest real-time data, and execute a Stream Analytics query to gain low-latency insights. After that, you will learn how Stream Analytics jobs can be monitored when deployed and used in production settings.

Lessons

  • Stream analytics
  • Process streaming data from stream analytics
  • Managing stream analytics jobs

Lab : Implement Stream Analytics

  • Process streaming data with stream analytics
  • Managing stream analytics jobs

After completing this module, students will be able to:

  • Describe stream analytics and its capabilities.
  • Process streaming data with stream analytics.
  • Manage stream analytics jobs.

Module 11: Implementing Streaming Solutions with Kafka and HBase

In this module, you will learn how to use Kafka to build streaming solutions. You will also see how to use Kafka to persist data to HDFS by using Apache HBase, and then query this data.

Lessons

  • Building and Deploying a Kafka Cluster
  • Publishing, Consuming, and Processing data using the Kafka Cluster
  • Using HBase to store and Query Data

Lab : Implementing Streaming Solutions with Kafka and HBase

  • Create a virtual network and gateway
  • Create a storm cluster for Kafka
  • Create a Kafka producer
  • Create a streaming processor client topology
  • Create a Power BI dashboard and streaming dataset
  • Create an HBase cluster
  • Create a streaming processor to write to HBase

After completing this module, students will be able to:

  • Build and deploy a Kafka Cluster.
  • Publish data to a Kafka Cluster, consume data from a Kafka Cluster, and perform stream processing using the Kafka Cluster.
  • Save streamed data to HBase, and perform queries using the HBase API.

Module 12: Develop big data real-time processing solutions with Apache Storm

This module explains how to develop big data real-time processing solutions with Apache Storm.

Lessons

  • Persist long term data
  • Stream data with Storm
  • Create Storm topologies
  • Configure Apache Storm

Lab : Developing big data real-time processing solutions with Apache Storm

  • Stream data with Storm
  • Create Storm Topologies

After completing this module, students will be able to:

  • Persist long term data.
  • Stream data with Storm.
  • Create Storm topologies.
  • Configure Apache Storm.

Module 13: Create Spark Streaming Applications

This module describes Spark Streaming; explains how to use discretised streams (DStreams); and explains how to apply the concepts to develop Spark Streaming applications.

Lessons

  • Working with Spark Streaming
  • Creating Spark Structured Streaming Applications
  • Persistence and Visualisation

Lab : Building a Spark Streaming Application

  • Installing Required Software
  • Building the Azure Infrastructure
  • Building a Spark Streaming Pipeline

After completing this module, students will be able to:

  • Describe Spark Streaming and how it works.
  • Use discretised streams (DStreams).
  • Work with sliding window operations.
  • Apply the concepts to develop Spark Streaming applications.
  • Describe Structured Streaming.

20776A: Performing Big Data Engineering on Microsoft Cloud Services

Module 1: Architectures for Big Data Engineering with Azure

This module describes common architectures for processing big data using Azure tools and services.

Lessons

  • Understanding Big Data
  • Architectures for Processing Big Data
  • Considerations for designing Big Data solutions

Lab : Designing a Big Data Architecture

  • Design a big data architecture

After completing this module, students will be able to:

  • Explain the concept of Big Data.
  • Describe the Lambda and Kappa architectures.
  • Describe design considerations for building Big Data Solutions with Azure.

Module 2: Processing Event Streams using Azure Stream Analytics

This module describes how to use Azure Stream Analytics to design and implement stream processing over large-scale data.

Lessons

  • Introduction to Azure Stream Analytics
  • Configuring Azure Stream Analytics jobs

Lab : Processing Event Streams with Azure Stream Analytics

  • Create an Azure Stream Analytics job
  • Create another Azure Stream job
  • Add an Input
  • Edit the ASA job
  • Determine the nearest Patrol Car

After completing this module, students will be able to:

  • Describe the purpose and structure of Azure Stream Analytics.
  • Configure Azure Stream Analytics jobs for scalability, reliability and security.

Module 3: Performing custom processing in Azure Stream AnalyticsThis module describes how to include custom functions and incorporate machine learning activities into an Azure Stream Analytics job.

Lessons

  • Implementing Custom Functions
  • Incorporating Machine Learning into an Azure Stream Analytics Job

Lab : Performing Custom Processing with Azure Stream Analytics

  • Add logic to the analytics
  • Detect consistent anomalies
  • Determine consistencies using machine learning and ASA

After completing this module, students will be able to:

  • Describe how to create and use custom functions in Azure Stream Analytics.
  • Describe how to use Azure Machine Learning models in an Azure Stream Analytics job.

Module 4: Managing Big Data in Azure Data Lake Store

This module describes how to use Azure Data Lake Store as a large-scale repository of data files.

Lessons

  • Using Azure Data Lake Store
  • Monitoring and protecting data in Azure Data Lake Store

Lab : Managing Big Data in Azure Data Lake Store

  • Update the ASA Job
  • Upload details to ADLS

After completing this module, students will be able to:

  • Describe how to create an Azure Data Lake Store, create folders, and upload data.
  • Explain how to monitor an Azure Data Lake account, and protect the data that it contains.

Module 5: Processing Big Data using Azure Data Lake Analytics

This module describes how to use Azure Data Lake Analytics to examine and process data held in Azure Data Lake Store.

Lessons

  • Introduction to Azure Data Lake Analytics
  • Analysing Data with U-SQL
  • Sorting, grouping, and joining data

Lab : Processing Big Data using Azure Data Lake Analytics

  • Add functionality
  • Query against Database
  • Calculate average speed

After completing this module, students will be able to:

  • Describe the purpose of Azure Data Lake Analytics, and how to create and run jobs.
  • Describe how to use USQL to process and analyse data.
  • Describe how to use windowing to sort data and perform aggregated operations, and how to join data from multiple sources.

Module 6: Implementing custom operations and monitoring performance in Azure Data Lake Analytics

This module describes how to create and deploy custom functions and operations, integrate with Python and R, and protect and optimise jobs.

Lessons

  • Incorporating custom functionality into Analytics jobs
  • Managing and Optimising jobs

Lab : Implementing custom operations and monitoring performance in Azure Data Lake Analytics

  • Custom extractor
  • Custom processor
  • Integration with R/Python
  • Monitor and optimise a job

After completing this module, students will be able to:

  • Describe how to incorporate custom features and assemblies into USQL.
  • Describe how to implement security to protect jobs, and how to monitor and optimise jobs to ensure efficient operations.

Module 7: Implementing Azure SQL Data Warehouse

This module describes how to use Azure SQL Data Warehouse to create a repository that can support large-scale analytical processing over data at rest.

Lessons

  • Introduction to Azure SQL Data Warehouse
  • Designing tables for efficient queries
  • Importing Data into Azure SQL Data Warehouse

Lab : Implementing Azure SQL Data Warehouse

  • Create a new data warehouse
  • Design and create tables and indexes
  • Import data into the warehouse.

After completing this module, students will be able to:

  • Describe the purpose and structure of Azure SQL Data Warehouse.
  • Describe how to design table to optimise the processing performed by the data warehouse.
  • Describe tools and techniques for importing data into a warehouse at scale.

Module 8: Performing Analytics with Azure SQL Data Warehouse

This module describes how to import data in Azure SQL Data Warehouse, and how to protect this data.

Lessons

  • Querying Data in Azure SQL Data Warehouse
  • Maintaining Performance
  • Protecting Data in Azure SQL Data Warehouse

Lab : Performing Analytics with Azure SQL Data Warehouse

  • Performing queries and tuning performance
  • Integrating with Power BI and Azure Machine Learning
  • Configuring security and analysing threats

After completing this module, students will be able to:

  • Describe how to perform queries and use the data held in a data warehouse to perform analytics and generate reports.
  • Describe how to configure and monitor a data warehouse to maintain good performance.
  • Describe how to protect data and manage security in a data warehouse.

Module 9: Automating the Data Flow with Azure Data Factory

This module describes how to use Azure Data Factory to import, transform, and transfer data between repositories and services.

Lessons

  • Introduction to Azure Data Factory
  • Transferring Data
  • Transforming Data
  • Monitoring Performance and Protecting Data

Lab : Automating the Data Flow with Azure Data Factory

  • Automate the Data Flow with Azure Data Factory

After completing this module, students will be able to:

  • Describe the purpose of Azure Data Factory, and explain how it works.
  • Describe how to create Azure Data Factory pipelines that can transfer data efficiently.
  • Describe how to perform transformations using an Azure Data Factory pipeline.
  • Describe how to monitor Azure Data Factory pipelines, and how to protect the data flowing through these pipelines.

Weiterlesen ...

Interessiert? Unsere Preise finden Sie hier oder rufen Sie uns an unter 0720-880599

You'll sit the following exams at the Firebrand training centre during the course, covered by your Certification Guarantee:

70-775: Perform Data Engineering on Microsoft HD Insight

Skills measured:

  • Administer and Provision HDInsight Clusters
  • Implement Big Data Batch Processing Solutions
  • Implement Big Data Interactive Processing Solutions
  • Implement Big Data Real-Time Processing Solutions

70-776: Engineering Data with Microsoft Cloud Services - currently in beta

Skills measured:

  • Design and Implement Complex Event Processing By Using Azure Stream Analytics (15-20%)
  • Design and Implement Analytics by Using Azure Data Lake (25-30%)
  • Design and Implement Azure SQL Data Warehouse Solutions (15-20%)
  • Design and Implement Cloud-Based Integration by using Azure Data Factory (15-20%)
  • Manage and Maintain Azure SQL Data Warehouse, Azure Data Lake, Azure Data Factory, and Azure Stream Analytics (20-25%)

This exam is currently in beta. If you pass it, you will receive full credit toward applicable certifications, but you will not receive a score report or pass/fail notification until 8-12 weeks following the conclusion of the beta period.

Weiterlesen ...

Interessiert? Unsere Preise finden Sie hier oder rufen Sie uns an unter 0720-880599

Microsoft Official Curriculum

  • MOC 20775A: Perform Data Engineering on Microsoft HD Insight
  • MOC 20776A: Engineering Data with Microsoft Cloud Services

Weiterlesen ...

Interessiert? Unsere Preise finden Sie hier oder rufen Sie uns an unter 0720-880599

Before attending this course, you must meet the following prerequisite knowledge and skills of:

  • Azure data services
  • Microsoft Windows operating system and its core functionality
  • Relational databases
  • Programming using R, and familiarity with common R packages
  • Common statistical methods and data analysis best practices.

Sind Sie sich unsicher, ob Sie die Voraussetzungen erfüllen?

Wir besprechen gerne mit Ihnen Ihren technischen Hintergrund, Erfahrung und Qualifikation, um herauszufinden, ob dieser Intensivkurs der richtige für Sie ist.

Firebrand Training bietet eine intensive Lernumgebung und erfordert besonderen Einsatz. Manche Voraussetzungen sind lediglich Richtlinien, welche durch Ihre individuelle Erfahrung in verwandten Bereichen und durch Ihre Motivation und Entschlossenheit erfüllt werden können.

Rufen Sie uns einfach unter 0720-880599 an und sprechen Sie mit einem unserer Kursberater.

Interessiert? Unsere Preise finden Sie hier oder rufen Sie uns an unter 0720-880599